

A multicenter audit of the antibiotic therapy for *Enterococcus* bacteraemia

Bérénice Souhail¹, Marion Le Maréchal¹, Roxane Manuello¹, Ratana Chrétien², Frédéric Assi³, Thierry Levent⁴, Arnaud Schoenig⁵, Pierre Marie Roger² (1) Infectiologie, CHU Nice; (2) Faculté de médecine de Nice; (3) Clinique Les Fleurs, Ollioules; (4) Clinique Vauban, Valenciennes; (5) Pôle Santé République, Clermont Ferrand

Introduction

Enterococci are part of normal human microbial flora. They are known as low virulent compared to numerous bacteria but although well recognized in several bacterial infections [1].

Enterococci are innately resistant to cephalosporin and aminoglycosides which are often used in health-care associated infections [2].

Inappropriate antibiotic therapy is an independent risk factor for mortality in enterococcal bacteraemia [3].

The influence of appropriate antimicrobial therapy in enterococcal bacteraemia has not been fully settled.

Objective

To evaluate the impact of an appropriate antimicrobial therapy in enterococcal bacteraemia on the patients outcomes.

Methods

<u>Design</u>: retrospective multicenter cohort study in 13 institutions in the South of France, between 1st January and 31th December 2016.

<u>Data</u>: we identified *Enterococcus spp.* monobacteriaemia (positive blood cultures) from the laboratory's database. We collected demographic and clinical data, antimicrobial treatment and patient's outcome.

Primary outcome:

- Effective antimicrobial therapy: Amoxicillin, Amoxicillinac.clavulanique, Vancomycin, Gentamycin, Daptomycin, Linezolid, Piperacillin-tazobactam or carbapenem
- Appropriate antimicrobial therapy : Amoxicillin, Vancomycin, Daptomycin or Gentamycin.

Unfavorable outcome:

- in short term evolution was death or intensive care unit admission (composite endpoint)
- in long term evolution was relapse.

Statistics: we conducted descriptive and bivariate analysis using fisher's test or chi-square test where needed.

Results

	N = 131	(%)		
Sex				
Man	101	77,1		
Woman	30	22,9		
Age (years-old) médiane [IQR]	76 [69-84]			
Charlson (Médiane [IQR])	3 [1-4]			
Establishment				
Teaching Hospital	49	37,4		
General Hospital	21	16,0		
Clinic	61	46,5		

Table 1- Patients' characteristics

109 infections (83 %) were caused by *E. faecalis* and 13 cases (10 %) were caused by *E. faecium*. 9 infections (7%) were caused by other *Enterococcus*.

	N =	131 (%)		munity- infections	Н	CAI*	Un	known
Urinary	59	(45,0)	13	(22,0)	27	(45,8)	19	(32,2)
Digestive	24	(18,3)	3	(12,5)	14	(58,3)	7	(29,2)
IV catheter	18	(13,7)	0	(0)	16	(88,9)	2	(11,1)
Unknown	15	(11,5)	3	(20)	8	(53,3)	4	(26,7)
Endocarditis	6	(4,6)	2	(33,3)	2	(33,3)	2	(33,3)
Orthopedic	3	(2,3)	0	(0)	0	(0)	3	(100)
Pulmonary	3	(2,3)	1	(33,3)	2	(66,7)	0	(0)
Urinary or pulmonary	2	(1,5)	1	(50)	1	(50)	0	(0)
Dental	1	(0,8)	1	(100)	0	(0)	0	(0)

^{*} HCAI = Healthcare associated infections

Table 2- Infections' localisations

Empirical antibiotherapy:

Monotherapy: 10 lines, bitherapy: 19 lines

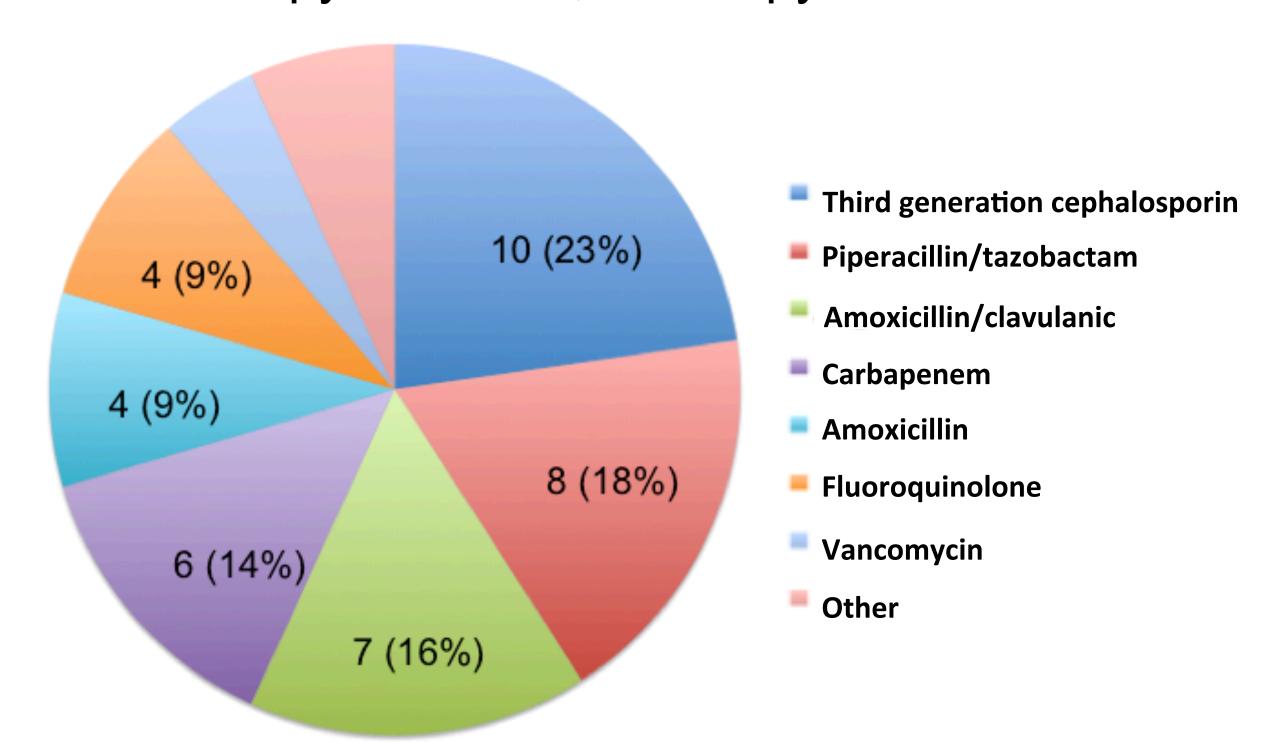


Figure 1 – Monotherapy probabilist antibiotherapy

44 (33,3%) have been considered as non effective and 65 (49%) as effective.

Documented antibiotherapy (DA):

Non treated: 3, Monotherapy: 76, Bitherapy: 32

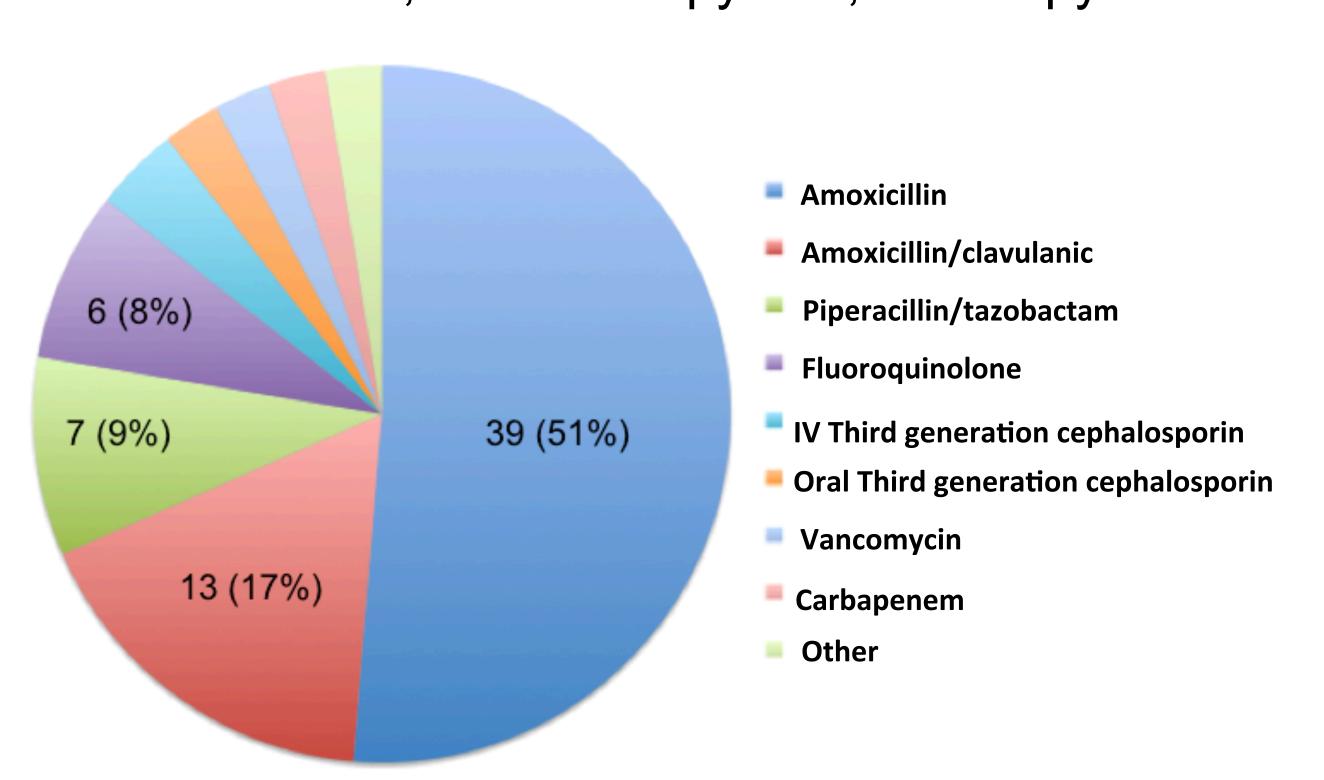


Figure 2 – Monotherapy documented antibiotherapy

94 (71,2%) received effective treatment and 17 (12,9%) non effective treatment.

Of the 94 patients who received effective therapy, 63 (67,0%) were appropriate and 31 (33%) were non appropriate.

Outcome:

Short term evolution: death and intense

care unit admission N = 27/131 (20,5%)

Long term evolution: relapse

N = 14/112 (12,5%)

	Sh				
	Favo	rable	Unfa		
	N =	%	N =	%	p-value
DA amoxicillin +	39	90,7	4	9,3	0,020
DA amoxicillin -	41	69,5	18	30,5	0,020

	Relapse				
	Yes		No		p-
	N =	%	N =	%	value
DA amoxicillin +	8	21,6	29	78,4	0,132
DA amoxicillin -	5	12,8	34	87,2	0,102

Table 3 - DA with amoxicillin and association with the evolution

Conclusion

Enterococcal bacteremia is associated with a high proportion of inappropriate empirical therapy. Not receiving amoxicillin as a documented treatment was associated with an unfavourable outcome.